
A Feature Analysis Tool for Batch RL Datasets
Ruiyang Xu∗

Northeastern University
USA

ruiyang@ccs.neu.edu

Zhengxing Chen∗
Facebook

USA
czxttkl@fb.com

Abstract
Batch RL is concerned about learning a decision policy from
a given dataset without interacting with the environment.
Although research is actively going on learning-related is-
sues (convergence speed, stability, and safety), empirical
challenges should be emphasized even before learning but
are largely ignored. That is, whether the underlying Markov
Decision Process (MDP) are valid and meaningful. This study
proposes a model-based method to check whether given data
has a well-formed MDP through a heuristic-based feature
analysis. We tested our method on a constructed environ-
ment as well as a real-world environment. Our results show
that our approach can identify potential problems of the data.
As far as we know, performing validity analysis on batch
RL data is a novel direction, and we envision that our tool
serves as a motivational example to open the door to this
area.

CCS Concepts: • Computing methodologies → Neural
networks; Causal reasoning and diagnostics.

Keywords: datasets, neural networks, feature analysis, causal
inference, model-based RL

ACM Reference Format:
Ruiyang Xu and Zhengxing Chen. 2018. A Feature Analysis Tool for
Batch RL Datasets. In Proceedings of Workshop on Deep Reinforce-
ment Learning for Knowledge Discovery (DRL4KD ’21). ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction
conventional reinforcement learning algorithms, which based
on an online learning paradigm (typically with the latest
learned policy, and using that experience to interact with
the environment to get real-time feedback, and then using

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DRL4KD ’21, April, 2021, Ljubljana, Slovenia
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

those feedback to improve the policy [19]. However, such
an algorithm usually poses difficulty in solving real-world
problems where online interaction is impractical since data
collection is expansive. As a result, researchers start pay-
ing attention to data-driven reinforcement learning (also
known as Batch RL) approaches that utilize only previously
collected offline data, without any other online interaction.
It is interesting to see whether the data-driven approach
can also be applied with RL problems once deep neural net-
works are incorporated [5, 9]. However, data that came from
real-world environments can be quite noisy for an offline RL
algorithm. Since a large number of state features might be
defined, and meanwhile, only a few of them are relevant to
the prediction of rewards and transitions, the RL algorithm
could become unstable once being fed with those irrelevant
features. Such an issue causes a challenge to both the learn-
ing algorithm and feature engineering. The latter even needs
to be redesigned if the learned model exhibits excessively
noisy rewards or transitions. An inappropriately designed
feature set could formulate the target problem as a Partially
Observable Markov Decision Processes (POMDPs) instead
of Markov Decision Processes (MDPs), and POMDP usually
causes problems to most offline RL algorithms [7]. In this
paper, we propose a method of feature analysis for a given
logged dataset. Our feature analysis borrows the idea from
causal inference, and model-based RL [1, 11, 14] and tries to
figure out potential causal relations among the input action,
state features, and target prediction on rewards and state
transitions.

The core idea of causal inference [1] is to make interven-
tions. However, it is challenging to apply interventions on
the given offline dataset because the underlying structural
causal model (SCM [13]) is unknown.We learn aworldmodel
to tackle this problem, essentially an MDP estimator from
the given dataset. Once we have the world model, we apply
interventions to the state features and actions and see how
those interventions affect the predicted rewards and state
transitions. We then measure each feature’s sensitivity to
the intervention and use the results to indicate whether the
given dataset is suitable for offline RL.

2 Related Work
Model-based RL (MBRL) [20] dates back to Sutton’s earlier
works on the Dyna algorithm [16–18]. In the Dyna algo-
rithm, learning iterates between two phases: 1. gathering
data from interaction with the environment and learning

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

DRL4KD ’21, April, 2021, Ljubljana, Slovenia Ruiyang Xu and Zhengxing Chen

a world model. And 2. policy improvement with data gen-
erated by the learned model. The Dyna algorithm allows
a policy to be learned with model-free algorithms without
interaction with the real environment. Recent improvements
of the Dyna algorithm based on learning with an ensemble of
models and combining with more advanced policy learning
algorithms like TRPO [10] and Meta-Learning [4].
Nevertheless, model-based RL has only been explored

lightly for batch RL. An earlier work of Ross et al. [15]
showed that performing MBRL directly to batch RL can have
arbitrarily large sub-optimality. Latter, Kidambi et al. [8] pro-
posed a new approach using pessimistic MDP and showed
that their algorithm “matches or exceeds state-of-the-art re-
sults in widely studied offline RL benchmarks”. However, it
is challenging to evaluate a Model-based batch RL algorithm,
given that one only has access to a limited dataset. Liu et
al. [11] gives a counterfactual inference based MBRL and
shows that it can vastly reduce the discrepancy between
the learned and real environment dynamics, yet a concrete
metric to evaluate the model performance still cannot be
derived from their method.

Another line of this research is related to causal inference
[1]. Buesing et al. [3] proposed a way to perform offline pol-
icy evaluation through casting MDPs into structural causal
models (SCM [13]) for causal inference, where trajectories
generated by the behavioral policy are viewed as observa-
tions and actions generated by target policy are viewed as
interventions. Through a presumed SCM, which works as
an inductive bias, the author shows that their method im-
proves policy evaluation and search results on a non-trivial
grid-world task.

3 Preliminary
3.1 Markov Decision Process
Reinforcement learning focuses on solving decision prob-
lems, usually formed as Markov decision processes (MDPs).
An MDP contains the following components:

• State Space S, which contains all possible states 𝑠 ∈ S
in a decision problem. In terms of the game, it contains
all possible legal game state.

• Action Space A, which contains all possible actions
𝑎 ∈ A in a decision problem. In terms of the game, it
contains all possible legal moves.

• Transition probabilities T (𝑠 ′ |𝑠, 𝑎), which defines the
dynamic from one state to another, namely, taking
action 𝑎 at state 𝑠 has a probability T (𝑠 ′ |𝑠, 𝑎) to arrive
at state 𝑠 ′.

• Rewards R(𝑠, 𝑎, 𝑠 ′), which defines the expected reward
after taking action 𝑎 in state 𝑠 and moving to state 𝑠 ′.

• Reward discount factor 𝛾 ∈ (0, 1], which weighs the
importance of future rewards. Typically, the farther
the distance of a reward from the current state, the less
effective the reward brings to the current decision.

Decisions making on a specific MDP can be abstracted as
a policy 𝜋 (𝑎 |𝑠), which defines the probability distribution of
taking some action 𝑎 given some state 𝑠 . That means, starting
from a state 𝑠𝑡 and given a policy 𝜋 , an agent can move to
next state by either sampling an action from 𝜋 or taking a
greedy action which has the highest probability. This process
continues until the agent comes into a terminal state. Solving
an MDP means to find an optimal policy that maximizes the
state value function:

𝑉 𝜋 (𝑠) = E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠]

where 𝑇 is the episode’s length, and 𝐺𝑡 is the cumulative
discounted reward:

𝐺𝑡 =

𝑇∑
𝑘=0

𝛾𝑖𝑅(𝑠𝑡+𝑘 , 𝑎𝑡+𝑘 , 𝑠𝑡+𝑘+1)

3.2 World Model
Our method is based on the world model [6]. To be specific,
we only use the Mixture Density Recursive Neural Network
(MDN-RNN network) to supervised learning the training
data. The MDN-RNN takes in the current state and action,
predicting the next state and reward. The next state is rep-
resented as a mixture Gaussian density, and the network
learns the mean and standard deviation for each Gaussian
[2]. The world model is a flexible probabilistic model that
can deal with even stochastic reward and transitions because
the underlying RNN model could output parameters for a
mixture of Gaussian distributions.
In this research, we only care about the reward, and the

next state predicted; therefore, we use the following loss
function to train the RNN:

𝐿 = (𝑟 − 𝑟)2︸ ︷︷ ︸
reward loss

−𝑙𝑜𝑔
𝐾∑
𝑘

𝛼𝑘 (𝑠, 𝑎)Φ(𝑠, 𝜇 (𝑠, 𝑎), 𝜎 (𝑠, 𝑎))︸ ︷︷ ︸
transition loss

where 𝑟 and 𝑠 are target values for reward and next state.
𝛼𝑘 (the weight for the kth Gaussian in the mixture), 𝜇 and
𝜎 are output heads from the RNN. And the given number
𝐾 is the total number of Gaussians in this mixture density
model. The intuition behind this loss function is that we
want to minimize the MSE on reward predicted, meanwhile
maximize the log-likelihood for the next state predicted,
using the given number of mixture Gaussians.

A Feature Analysis Tool for Batch RL Datasets DRL4KD ’21, April, 2021, Ljubljana, Slovenia

Figure 1. The MDN-RNN network for supervised learning
the dynamics of the target environment.

4 Methodology
We first train a world model on the given dataset, which
is sampled through an unknown behavior policy (in our
experiment, we use the random policy as the behavior policy).
After the training finished, we apply feature analysis on an
evaluation batch, based on the following metrics:

• Reward importance metric (importance): a feature 𝑓𝑖 ’s
Reward importance (importance) is measured by the
change of reward prediction when replacing all the
appearance of 𝑓𝑖 with its mean value. A higher reward
sensitivity means that the feature interferes more with
the reward signal and hence more importance to the
reward prediction, under the Markov assumption.

• State sensitive metric (sensitivity): a feature 𝑓𝑖 ’s state
sensitive (sensitivity) is measured by the change of
state prediction when randomly shuffling the input ac-
tions. To be specific, for a given feature 𝑓𝑖 and for each
state 𝑠 and any possible action 𝑎, sensitivity measures
the change of 𝑓𝑖 on the predicted next state 𝑠 ′. A high
reward importance but low state sensitivity indicates
that the feature does interfere with the reward signal.
However, the agent cannot control it, which indicates
a hidden factor or POMDP.

We run the feature analysis process on an ensemble of models
to perform a statistic test and compute a confidence interval
for the experimental results. To perform a statistic test on
reward importance and state sensitivity, we collect those val-
ues from each model in the ensemble and then build a normal
distribution based on the collected values. We then perform
a t-test on the given distribution with the null hypothesis
(the null case in (a)). We take a confidence interval of 95%.
Given the ensemble of models trained independently, we
first test the existence of sensitive reward features. If there is
no such feature, then the given dataset might not be suitable
for RL. One might want to try Bandit algorithms or other
approaches instead. Otherwise, if the feature is of reward
importance, we would like to see whether it is controllable

or not (Fig. 2). By shuffling the input actions, we measure
the same feature’s change on the predicted next state. An
uncontrollable feature might introduce noises to the training
data and make the state vector complicated. However, we
suggest treating those features carefully because they are
not always redundant. Some of them might indicate POMDP,
which means using a more sophisticated model (e.g., DQN
with multi-step inputs) might be helpful.

5 Experiment
5.1 Environments constructed
We constructed environments to simulate different situa-
tions in batch RL. All environments share the same state
vector form, namely 𝑠𝑡 = [𝑓 𝑡0 , 𝑓 𝑡1 , ..., 𝑓 𝑡𝑁] (and 𝑁 = 10 in our
experiment), and there are only two actions, 0 or 1; yet they
have different transition and reward functions. Based on the
causal relation between states, actions, rewards, and possible
hidden factors, we created and run feature analysis on the
following environments:

1. Null relation: in this case, none of the state, action,
and reward are dependent on each other. The state
transition can be defined as: for any 𝑠𝑡+1, 𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 +
1) = 1 − 𝑖

𝑁
. While the reward is a random signal from

either 0 or 1 with probability 0.5. Such an environment
works as a baseline, which will help us understand
how sensitive metrics look like when everything is
non-sensitive.

2. Action to reward causal relation: in this case, only ac-
tions have causal relations with the rewards; anything
else keeps independent. That means that the state tran-
sition is the same as the case (1), but the reward signal
will change with the probability 𝑃 (𝑟 = 1|𝑎 = 1) = 1.

3. Action to state causal relation: in this case, only actions
have causal relations with the states, anything else
keeps independent. That means that the reward is the
same as case (1), but the state will change with the
probability

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 1) = 1 − 𝑖

𝑁

and
𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 0) = 𝑖

𝑁

4. State to reward causal relation: in this case, only states
have causal relations with the rewards; anything else
keeps independent. That means that the state transi-
tion is the same as the case (1), but the reward signal
will change with the probability 𝑃 (𝑟 = 1|𝑓𝑘 > 𝜃). No-
tice that in this case, we only focus on one specific
feature, and the reward will change only when that
feature increased larger than a certain threshold. In
our experiment, we use 𝑘 = 0 and 𝜃 = 50.

5. Action to the state to reward causal relation: in this
case, we have a full causal relation, which means that

DRL4KD ’21, April, 2021, Ljubljana, Slovenia Ruiyang Xu and Zhengxing Chen

reward importance analysis

noisy data,
multi-armed bandit at best

non
e im

por
tan

t

state sensitivity analysis

action ineffective

non
e se

nsi
tive

potentially suitable for batch RL

at least one sensitive

at least one important

Figure 2. The process of feature analysis

the state transition behaves like (3), while the reward
acts like (4).

6. Hidden factor as a confounder to state and reward. In
this case, we have conditionally independent states and
rewards, given hidden factors ℎ’s, which take value
either 0 or 1. The state will change with the probability

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 1) = 1 − 𝑖

𝑁

and

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 0) = 0.5(1 − 𝑖

𝑁
)

Meanwhile the reward changes with the probability

𝑃 (𝑟 = 1|ℎ = 1) = 1

7. Action to state with Hidden factor as a confounder to
state and reward. In this case, like in (6), hidden factors
affect states and rewards, but the state is also affected
by the actions chosen. As a result, the state changes
with the following probabilities:

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 1, 𝑎 = 1) = 1 − 𝑖

𝑁

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 1, 𝑎 = 0) = 𝑖

𝑁

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 0, 𝑎 = 1) = 0.5(1 − 𝑖

𝑁
)

𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|ℎ = 0, 𝑎 = 0) = 0.5(𝑖
𝑁
)

The training and evaluation batches are sample from those
environments with a given episode length 𝑇 = 100, that
means a terminal state is reached once 𝑡 = 𝑇 = 100.

5.2 Real-world environments
Besides the constructed environment, we also test ourmethod
on two real-world problems:

1. Load balancer [12]: jobs arrive over time, and a load
balancing agent sends them to one of 𝑁 (and 𝑁 = 10 in
our experiment) servers. The jobs arrive according to a
Poisson process, and the job sizes follow a Pareto distri-
bution. The 𝑁 servers process jobs from their queues
at different rates (the rates are set to [1, 0, 1, 0, ..., 1, 0]
in our experiment). On each job arrival, the agent ob-
serves a state 𝑠 = (𝑞1, 𝑞2, ..., 𝑞𝑁 , 𝑀), where 𝑞𝑖 denoting
the queue length at the server 𝑖 and 𝑀 is the size of
the incoming job. It then takes action from {1, 2, ..., 𝑁 },
and sends the job to one of the servers. The goal of
the load balancer is to minimize the average job com-
pletion time. The reward corresponding to this goal is
𝑅𝑡 = −𝜏 × 𝑗 , where 𝜏 is the time elapsed since the last
action, and 𝑗 is the total number of jobs in the queues.

2. Bipedal-walker-v2: this is the same environment from
OpenAI Gym project 1. The state has 24 features: hull
angle, hull angular velocity, horizontal velocity, verti-
cal velocity, hip joint 1 angle, hip joint 1 speed, knee
joint 1 angle, knee joint 1 speed, leg 1 ground contact
flag, hip joint 2 angle, hip joint 2 speed, knee joint 2
angle, knee joint 2 speed, leg 2 ground contact flag,
and 10 Lidar readings. And the action is a 4-D vector
with continuous values: Hip 1 Torque, Knee 1 Torque,
Hip 2 Torque, Knee 2 Torque. Reward is given for mov-
ing forward, total 300+ points up to the far end. If the
robot falls, it gets -100. Also, applying motor torque
costs a small amount of points.

5.3 Experimental results
We first show our results for those constructed environments
in Fig. 5, where each row contains two measurement metrics
for the same environment. It can be seen from those figures
that our method measures the causal relations among action,
state, and reward adequately:

1See https://github.com/openai/gym/wiki/BipedalWalker-v2 for details.

A Feature Analysis Tool for Batch RL Datasets DRL4KD ’21, April, 2021, Ljubljana, Slovenia

1. Null relation: it can be seen from (b) and (c) that both
of the reward sensitivity and state sensitivity are ex-
tremely low (less than 0.1) since this case reflects no
causal relations (which means that none of the actions
or rewards affects the prediction of the reward), the
value here can be regarded as a baseline and used as a
null hypothesis in a statistic test for the following cases.
It should be noticed that there is a natural decreasing
trend in (c), that is because of a natural decreasing of
variance for predicted state transitions. Due to our en-
vironment’s construction, features with higher feature
numbers are much more stable than those with lower
feature number. That is why we have a decreasing
trend of variance for those features.

2. Action to reward causal relation: it can be seen from
(e) that the predicated rewards are highly sensitive to
the first actions. Moreover, from (f), we see that state
sensitivity is insignificant, which means no apparent
causal effect on state transitions. One can also notice
the decreasing trend of variance, and the reason is the
same as in (c).

3. Action to state causal relation: it can be seen from (h)
that the reward sensitivity is extremely low, which
means that there is no apparent causal effect on the re-
ward. And from (i), we see that state sensitivity forms
a parabolic curve due to the way the environment
was constructed. To be specific, since the sensitivity
is correlated with the probability of changing of a the
predicted state feature after shuffling the action, we
can calculate this probability to verify our experiment
result. Given a state feature 𝑓𝑖 , after shuffling, it either
sees the same action as before the shuffling or a dif-
ferent action. And the predicted feature might change
only if our model sees a different action, which means

𝑃 (𝑓 𝑡+1𝑖 ≠ 𝑓 𝑡+1𝑖)
= 𝑃 (𝑎 = 0)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 |𝑎 = 0)
𝑃 (𝑎 = 1)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 1)
+ 𝑃 (𝑎 = 1)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 |𝑎 = 1)𝑃 (𝑎 = 0)
𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 0)
+ 𝑃 (𝑎 = 0)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 0)
𝑃 (𝑎 = 1)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 |𝑎 = 1)
+ 𝑃 (𝑎 = 1)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 + 1|𝑎 = 1)
𝑃 (𝑎 = 0)𝑃 (𝑓 𝑡+1𝑖 = 𝑓 𝑡𝑖 |𝑎 = 0)

= (𝑖
𝑁
)2 − 𝑖

𝑁
+ 1
2

where 𝑓 𝑡+1𝑖 is the predicted state feature after the shuf-
fling, while 𝑓 𝑡+1𝑖 is the predicted state feature before
the shuffling. 𝑎 is the shuffled action and 𝑎 is the origi-
nal action.

4. State to reward causal relation: it can be seen from (k)
that only state feature 0 is a sensitive feature, which is
consistent with our environment design. Furthermore,
from (i), there is no causal effect on state transitions.

5. Action to the state to reward causal relation: since
state features 0 intercepts the causal information flow
from action to reward, it can be seen from (n) that
state feature 0 has been weighted more than other
state features and actions. On the other hand, in (o),
we have similar results as (i).

6. Hidden factor as a confounder to state and reward. It
can be seen from (q) that the learned model cannot tell
it apart from a direct state to reward causal relation,
even though the reward and state are conditionally
independent with each other given the confounder h.
In other words, without seeing h, one cannot claim that
the state and reward are independent.Meanwhile, state
transitions are non-sensitive to the action shuffling (r).

7. Action to state with Hidden factor as a confounder to
state and reward. Like in (5), It is to be noted that it
is challenging for our model to distinguish between
case (m) and (s) because the learning is based on the
correlation in the data; it cannot distinguish between
causality and correlation. Therefore, for case (7), since
the hidden factor is unobservable to the model, it will
somehow learn correlations between state and reward,
even though they are conditionally independent. How-
ever, one should notice that in (s), the action is discon-
nected with reward; that is why we see the actions are
flat (t). On the other hand, for state transition sensitiv-
ity (n), we have similar results as in (i) and (o).

We also show the experimental results for the two real-
world problems as following:

1. Load balancer: since this problem can be treated as
a well-defined MDP, our method can efficiently ap-
ply feature analysis. It can be seen in Fig. 3 (a) that
state features are less relevant to the rewards than
action features, which is because that the reward is
defined only based on the current queue size from each
server, while the current action determines the change
of queue size for each state. On the other hand, when it
comes to the causal effects on the state transitions, one
can see that the importance and sensitivity of state fea-
ture increases while the serving rate decreases, which
is because those servers with lower serving rate pose
to accumulate jobs in the queue, hence creating more
variance to the state feature than those with a higher
serving rate.

2. Bipedal-walker-v2: it is to be noted that this problem
is POMDP because the agent cannot fully observe the
environment, except the information from scanning
the landscape every few seconds. Moreover, due to
the environment’s complexity, the dataset sampled

DRL4KD ’21, April, 2021, Ljubljana, Slovenia Ruiyang Xu and Zhengxing Chen

from a random policy rarely tells us anything. As a
result, we see that neither rewards nor state transitions
are sensitive to the action or state features (Fig. 4).
Nevertheless, we do see that in (a), some features seem
to be relatively more sensitive than others, and we
guess that our method can still retrieve certain causal
information from this complex environment. However,
we should point out that for a complex POMDP, the
world model cannot thoroughly learn it merely based
on a randomly sampled dataset.

(a) (b)

Figure 3. Feature importance (a) and sensitivity (b) mea-
sured for the load balancer environment. Notice that state
0 to state 9 are queue lengths and state 10 is the size of
incoming job.

(a) (b)

Figure 4. Feature importance (a) and sensitivity (b) mea-
sured for the bipedal-walker-v2 environment.

6 Conclusion
We proposed a feature analysis method for offline RL training
data that helps RL practitioners evaluate feature sensitivi-
ties and examine reward/transition functions. Our approach
can be used to accelerate feature engineering iterations and
potentially improve training performance. Offline RL algo-
rithms are suitable for problems were: (1) taking actions to
lead to state transitions, (2) rewards are predictable by states
or actions. If either condition is unsatisfied, it raises a flag
for a more in-depth understanding of data. At the core of our
method is the world model, with the inputs as state-action
pairs and the outputs as the reward’s predictions, next state.
In other words, the world model attempts to learn the under-
lying MDPs from the logged data. We perform experiments

both on sets of constructed ad-hoc environments and real-
world environments. We show that the results are expected
and consistent with the environment. We also notice that, for
a complex environment (usually POMDP), the learned world
model is highly biased by the behavior policy on which the
training dataset is sampled. Nevertheless, our method can
still be regarded as a reference for environment design and
feature engineering in offline RL.

References
[1] James Bannon, BradWindsor, Wenbo Song, and Tao Li. 2020. Causality

and Batch Reinforcement Learning: Complementary Approaches To
Planning In Unknown Domains. arXiv:2006.02579 [cs.LG]

[2] Christopher M. Bishop. 1994. Mixture density networks. Technical
Report.

[3] Lars Buesing, Theophane Weber, Yori Zwols, Sebastien Racaniere,
Arthur Guez, Jean-Baptiste Lespiau, and Nicolas Heess. 2018.
Woulda, Coulda, Shoulda: Counterfactually-Guided Policy Search.
arXiv:1811.06272 [cs.LG]

[4] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim
Asfour, and Pieter Abbeel. 2018. Model-Based Reinforcement Learning
via Meta-Policy Optimization. arXiv:1809.05214 [cs.LG]

[5] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey
Levine. 2020. D4RL: Datasets for Deep Data-Driven Reinforcement
Learning. arXiv:2004.07219 [cs.LG]

[6] David Ha and Jürgen Schmidhuber. 2018. Recurrent World Models
Facilitate Policy Evolution. arXiv:1809.01999 [cs.LG]

[7] Matthew Hausknecht and Peter Stone. 2017. Deep Recurrent Q-
Learning for Partially Observable MDPs. arXiv:1507.06527 [cs.LG]

[8] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and
Thorsten Joachims. 2020. MOReL : Model-Based Offline Reinforcement
Learning. arXiv:2005.05951 [cs.LG]

[9] Aviral Kumar, Justin Fu, George Tucker, and Sergey Levine. 2019.
Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction.
arXiv:1906.00949 [cs.LG]

[10] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter
Abbeel. 2018. Model-Ensemble Trust-Region Policy Optimization.
arXiv:1802.10592 [cs.LG]

[11] Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski,
Aldo Faisal, Finale Doshi-Velez, and Emma Brunskill. 2019. Rep-
resentation Balancing MDPs for Off-Policy Policy Evaluation.
arXiv:1805.09044 [cs.LG]

[12] Hongzi Mao, Shaileshh Bojja Venkatakrishnan, Malte Schwarzkopf,
andMohammad Alizadeh. 2019. Variance Reduction for Reinforcement
Learning in Input-Driven Environments. arXiv:1807.02264 [cs.LG]

[13] Judea Pearl. 1995. Causal Diagrams for Empirical Research. Biometrika
82, 4 (1995), 669–688. http://www.jstor.org/stable/2337329

[14] Danilo J. Rezende, Ivo Danihelka, George Papamakarios, Nan Rose-
mary Ke, Ray Jiang, Theophane Weber, Karol Gregor, Hamza Merzic,
Fabio Viola, Jane Wang, Jovana Mitrovic, Frederic Besse, Ioannis
Antonoglou, and Lars Buesing. 2020. Causally Correct Partial Models
for Reinforcement Learning. arXiv:2002.02836 [cs.LG]

[15] Stephane Ross and J. Andrew Bagnell. 2012. Agnostic System Identifica-
tion forModel-Based Reinforcement Learning. arXiv:1203.1007 [cs.LG]

[16] Richard S. Sutton. 1990. Integrated Architectures for Learning, Plan-
ning, and Reacting Based on Approximating Dynamic Programming.
In In Proceedings of the Seventh International Conference on Machine
Learning. Morgan Kaufmann, 216–224.

[17] Richard S. Sutton. 1991. Dyna, an Integrated Architecture for Learning,
Planning, and Reacting. SIGART Bull. 2, 4 (July 1991), 160–163. https:
//doi.org/10.1145/122344.122377

https://arxiv.org/abs/2006.02579
https://arxiv.org/abs/1811.06272
https://arxiv.org/abs/1809.05214
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/1809.01999
https://arxiv.org/abs/1507.06527
https://arxiv.org/abs/2005.05951
https://arxiv.org/abs/1906.00949
https://arxiv.org/abs/1802.10592
https://arxiv.org/abs/1805.09044
https://arxiv.org/abs/1807.02264
http://www.jstor.org/stable/2337329
https://arxiv.org/abs/2002.02836
https://arxiv.org/abs/1203.1007
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377

A Feature Analysis Tool for Batch RL Datasets DRL4KD ’21, April, 2021, Ljubljana, Slovenia

[18] Richard S. Sutton. 1991. Planning by Incremental Dynamic Program-
ming. In In Proceedings of the Eighth InternationalWorkshop onMachine
Learning. Morgan Kaufmann, 353–357.

[19] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Rein-
forcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.

[20] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming
Wen, Eric Langlois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel,
and Jimmy Ba. 2019. Benchmarking Model-Based Reinforcement
Learning. arXiv:1907.02057 [cs.LG]

A S R

H
(a) (b) (c)

A S R

H
(d) (e) (f)

A S R

H
(g) (h) (i)

A S R

H
(j) (k) (l)

https://arxiv.org/abs/1907.02057

DRL4KD ’21, April, 2021, Ljubljana, Slovenia Ruiyang Xu and Zhengxing Chen

A S R

H
(m) (n) (o)

A S R

H
(p) (q) (r)

A S R

H
(s) (t) (u)

Figure 5. Feature importance and sensitivity measured for different environments listed in section 5.1.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Markov Decision Process
	3.2 World Model

	4 Methodology
	5 Experiment
	5.1 Environments constructed
	5.2 Real-world environments
	5.3 Experimental results

	6 Conclusion
	References

